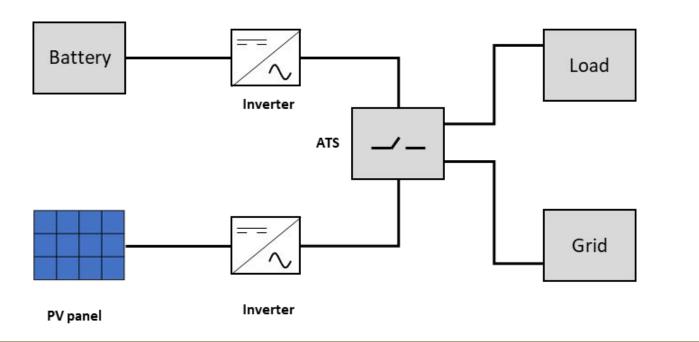


Battery Scheduling for Carbon Reduction

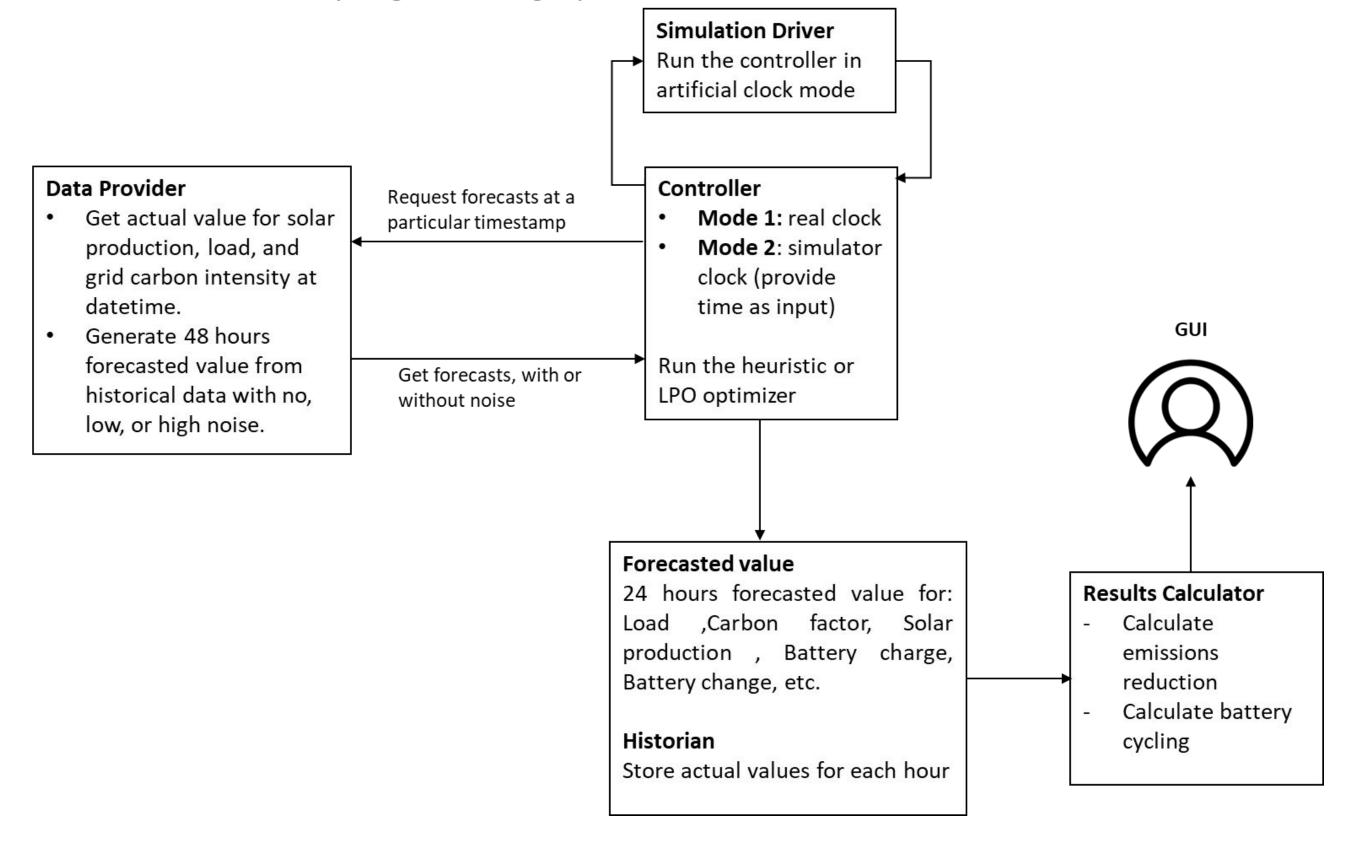

STUDENTS: CESAR ROBLES, FURY MENG, GHOVINDO SIADARI, JACKSON MARROTT, JOSE CORTEZ, SOURYADEEP MONDAL

Abstract

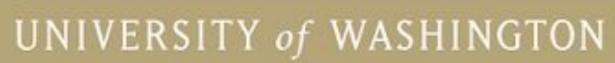
- Grid carbon intensity measures the carbon dioxide emissions (in pounds) per kilowatt-hour of electricity produced.
- Installing rooftop solar reduces carbon emissions, and adding a battery further enhances carbon reduction by storing and discharging excess solar energy
- Battery scheduling is the process of determining when and how much to charge/discharge a battery energy storage system to optimize the carbon reduction.
- The project's objective is to develop battery management software that effectively reduces carbon emissions through battery scheduling.

Overall Conceptual Design

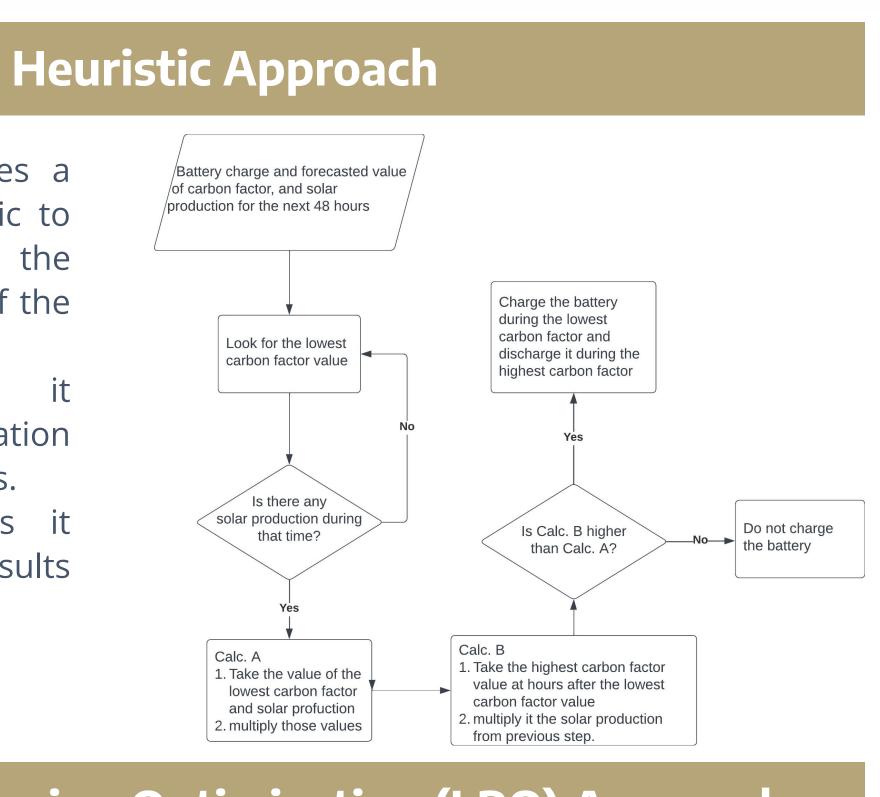
- The solar panel will be equipped with an on-grid inverter to operate in parallel with the utility grid.
- Battery system will be provided to store energy produced by the solar panels.
- An additional inverter will be required to couple the DC voltage from battery to AC voltage in the building electric system.
- Automatic transfer switch (ATS) systems will also be installed to facilitate make/break maneuvers.



Software list to design the hardware:


- Solar panel : Helioscope
- Battery Sizing : Energy Toolbase

Software Architecture


• Two controller designs are proposed, the first is heuristic controller and the second is linear programming optimization (LPO) controller.

ELECTRICAL & COMPUTER ENGINEERING

- Heuristic model utilizes a simple conditional logic to decide the charging/discharging of the battery.
- The advantages is it perform faster calculation and uses less resources.
- The disadvantages is it gives inferior results compared to LPO.

Linear Programming Optimization (LPO) Approach

- LPO utilizes a mathematical optimization to find the most optimum battery charging/charging.
- The advantages is it gives the best solution possible.
- The disadvantages is it requires longer time to run.

\min_{c}	CF(L - (s + c))
s.t.	$q \ge 0$
	$q \leq Q$
	$c \leq D$
	$c \geq -D$

 $c \leq s$

- CF = carbon factor (kg/kWh) L = energy consumption (kWh) • s = energy production from solar (kWh) • Q = battery capacity (kWh) • q = battery capacity at a given time (kWh)

- c = charging rate at a given time (kW)
- C = charging capacity of battery (kW)

Graphical User Interface (GUI)

- GUI is designed based on the user's need. The potential user of this software is the facility manager of a commercial building. • Some features in the GUI are real time forecasted values, actual values, and
- summary of the actual values.

ADVISERS: JESSE GANTZ, AVNAESH JAYANTILAL, BAOSEN ZHANG **SPONSOR:** GENERAL ELECTRIC

O Solar and Battery Forecast 200 150 ≅	5 10	15 Time (hours)	20
5	5 10	Time (hours)	
	Sin	nulation Rep	oort
	1 : Perfect one-yea on emissions are		
		278618.97 Pounds	
		Relative reduction 100	0%
Scenario 2:	: 48-hour forecas	ted data for cark	oon factor sola
	useu. Carbon er	nissions are m	
Forecasted			inimized using
	data vary by 0% recast error.		inimized using
	data vary by 0%	6, 10%, and 20%	inimized using
	data vary by 0%		inimized using
	data vary by 0% recast error.	6, 10%, and 20% Scenario 2	inimized using 6 deviation fro
	data vary by 0% recast error. 0% 275761.2 Pounds	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction	inimized using 6 deviation fro 20% 275586.4 Pounds
simulate for	data vary by 0% recast error. 0% 275761.2 Pounds 98.97%	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96%	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91%
simulate for Scenario 3:	data vary by 0% recast error. 0% 275761.2 Pounds 98.97% Similar to Scenar	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96%	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91%
simulate for	data vary by 0% recast error. 0% 275761.2 Pounds 98.97% Similar to Scenar	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96% Tio 2, but a heuris	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91%
simulate for Scenario 3:	data vary by 0% recast error. 0% 275761.2 Pounds 98.97% Similar to Scenar ssions.	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96% To 2, but a heuris	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91% Stic approach is
simulate for Scenario 3:	data vary by 0% recast error. 0% 275761.2 Pounds 98.97% Similar to Scenar ssions.	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96% To 2, but a heuris Scenario 3 10%	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91% Stic approach is 20%
simulate for Scenario 3:	data vary by 0% recast error. 0% 275761.2 Pounds 98.97% Similar to Scenar ssions.	6, 10%, and 20% Scenario 2 10% 275732.7 Pounds Relative reduction 98.96% To 2, but a heuris	inimized using 6 deviation fro 20% 275586.4 Pounds 98.91% Stic approach is

- carbon factor and production. • Conducting software to evaluate its functi
- in real-life scenarios.

ifferent forecast

production, and

Scenario 1	
278618.97 Pounds	
Relative reduction 100%	

production, and LPO optimizer. actual data to

sed to minimize

ference between or also does not

lgement

Utilizing an API call to obtain the projected value of	[1] PJM Interconnection. "How PJM Schedules Generation to Meet Demand." PJM Learning Center. [Online]. Available: https://learn.pjm.com/three-priorities/keeping-the-lights-on/how-pjm-schedules-gener ation-to-meet-demand. [Accessed: Mar. 12, 2023].
carbon factor and solar production. Conducting software testing to evaluate its functionality	 [2] WattTime. (n.d.). WattTime Explorer [Online]. Available: https://www.watttime.org/explorer/#4/47.61/-122.34. [Accessed: Mar. 12, 2023]. [3] A. Lutchenkov, "Your student guide to the IMA," The Daily of the University of Washington, Sep. 2018. [Online]. Available: https://www.dailyuw.com/arts_and_culture/your-student-guide-to-the-ima/article_959 35bfe-c207-11e8-9a52-5f20068d20bc.html. [Accessed: Mar. 15, 2023]. [4] GE Grid Solutions, "Real-Time Insight: Transforming Grid Operations with Advanced
in real-life scenarios.	Analytics," GE Grid Solutions Brochure, Apr. 2018. [Online]. Available: https://www.gegridsolutions.com/products/brochures/real-timeinsight_brochure_20180 430.pdf. [Accessed: Mar. 15, 2023].